Correlation of Flame Speed with Stretch in Turbulent Premixed Methane/air Flames
نویسنده
چکیده
Direct numerical simulations of two-dimensional unsteady premixed methane/air flames are performed to determine the correlation of flame-speed with stretch over a wide range of curvatures and strain rates generated by intense two-dimensional turbulence. Lean and stoichiometric premixtures are considered with a detailed C1-mechanism for methane oxidation. The computed correlation shows the existence of two distinct stable branches. It further shows that exceedingly large negative values of stretch can be obtained solely through curvature effects, which give rise to an overall nonlinear correlation of the flame speed with stretch. Over a narrower stretch range, 11 # Ka # 1, which includes 90% of the sample, the correlation is approximately linear, and, hence, the asymptotic theory for stretch is practically applicable. Overall, one-third of the sample has negative stretch. In this linear range, the Markstein number associated with the positive branch is determined for different initial turbulence intensities. For high turbulence intensity, the large eddy turnover time becomes shorter than a flame time, and the flame propagation becomes less responsive to unsteady straining. Reductions in strain Markstein numbers by as much as 37% from comparable steady counterflow computations are reported. In addition to the conventional positive branch, a negative-branch is identified. This negative branch occurs when a flame cusp, with a center of curvature in the burnt gases is subjected to intense compressive strain, resulting in a negative displacement speed. Negative flame speeds are also encountered for extensive tangential strain rates exceeding a Karlovitz number of unity, a value consistent with steady counterflow computations. In both situations, consistent with earlier findings, the source of the reduction in flame speed is attributed to an imbalance between diffusion and reaction.
منابع مشابه
Equivalence Ratio Effects in Turbulent, Premixed Methane-air Flames
Turbulent methane flames exhibit a change in Markstein number as the equivalence ratio changes. In this paper, we demonstrate how these changes in Markstein number are related to shifts in the chemistry and transport. We focus on the analysis of simulations of two-dimensional premixed turbulent methane flames at equivalence ratios φ=0.55 and φ=1.00 computed using the GRI-Mech 3.0 mechanism. The...
متن کاملInfluence of coal dust on premixed turbulent methane–air flames
This study discusses the design of a new experimental platform, the Hybrid Flame Analyzer (HFA) to measure burning velocity of gas, dust, and hybrid (gas and dust) premixed flames. The HFA is used to analyze a particle–gas–air system of coal dust particles (75–90 lm and 106–120 lm) in a premixed CH4–air (/g = 0.8, 1.0 and 1.2) flame. Experimental results show that particles usually increase the...
متن کاملActive Control for Statistically Stationary Turbulent Premixed Flame Simulations
The speed of propagation of a premixed turbulent flame correlates with the intensity of the turbulence encountered by the flame. One consequence of this property is that premixed flames in both laboratory experiments and practical combustors require some type of stabilization mechanism to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity t...
متن کاملEffects of Small-Scale Turbulence on NOx Formation in Premixed Flame Fronts
Abstract A flamelet-based approach that accounts for turbulence-chemistry interaction has been formulated to simulate NOx formation in turbulent lean premixed combustion. In the simulations, the species NO is transported and solved with the chemical source term being modelled through its formation in flame fronts and its formation rate in post-flame regions. The flame-front NO and post-flame NO...
متن کاملNumerical simulation of Lewis number effects on lean premixed turbulent flames
A dominant factor in determining the burning rate of a premixed turbulent flame is the degree to which the flame front is wrinkled by turbulence. Higher turbulent intensities lead to greater wrinkling of the flame front and an increase in the turbulent burning rate. This picture of turbulent flame dynamics must be modified, however, to accommodate the affects of variations in the local propagat...
متن کامل